poniedziałek, 3 stycznia 2022

Zwodnicza Skala podobieństwa do Ziemi

Earth Similarity Index (ESI), czyli "Skala podobieństwa do Ziemi" nie ma mówić o tym jakie są szanse na życie na danym ciele niebieskim jedynie porównywać szereg jego parametrów z naszą planetą. Ale nie oszukujmy się - jeśli mówimy o planecie lub księżycu w kontekście podobieństwa do Ziemi trudno nie myśleć o tym co najbardziej wyróżnia Ziemię.

Dlatego też przygotowałem grafikę, która daje pewien ogląd tego jak działa skala ESI. Na cel wziąłem cztery obiekty w układzie słonecznym oraz cztery z siedmiu egzoplanet krążących wokół gwiazdy TRAPPIST-1.

(kliknij by powiększyć)

Jednym z kluczowych czynników ESI jest temperatura równowagi. Zależy ona jedynie od tego ile energii gwiazdy dociera do planety. Konkretniej - to oszacowanie jej temperatury, gdyby nie miała atmosfery i była tak zwanym ciałem doskonale czarnym. To dwa bardzo poważne założenia. Ciemna powierzchnia odbija niewiele promieni słonecznych - przykładem może być nasz Księżyc odbijający 14% promieni słonecznych. Jasna powierzchnia, taka jak na przykład lodowa skorupa Enceladusa (księżyca Saturna), odbija aż 99% promieniowania. Tę procentową wartość nazywamy albedo. Gazy atmosferyczne wpływają zarówno na albedo (białe chmury odbijają światło), jak i na efekt cieplarniany, bo niczym koc otulający planetę pozwalają jej utrzymywać ciepło.

Innymi słowy jeśli temperatura równowagi dla jakiejś egzoplanety jest podobna do Ziemskiej, to można się spodziewać, że z podobną powierzchnią i atmosferą będzie mieć też podobną temperaturę. Jeśli jednak powierzchnia i atmosfera są inne... cóż - spójrzcie na Księżyc i Wenus.

W roku 2022 mam nadzieję dostarczać Wam jeszcze lepszych jakościowo treści.

sobota, 4 grudnia 2021

Neutron Update


Przedwczoraj Rocket Lab zamieścił w sieci prezentację aktualnego stanu projektu rakiety Neutron. Raz jeszcze prezenterem był Peter Beck ze swoim nowozelandzkim akcentem. W niecałe dziesięć minut pokazano, że firma nie próżnowała. Neutron wciąż istnieje tylko “na papierze”, ale projekt uległ sporym zmianom. Jest tu kilka naprawdę ciekawych pomysłów.


Beck kilka razy używa określenia, że to rakieta skrojona na rok 2050. Wystarczająco dużo razy, że zacząłem się bać, że przyjdzie nam czekać na nią trzydzieści lat. Chyba nie będzie tak źle, bo pierwsze testy nowego silnika planują na 2022 rok.

Przyjrzyjmy się zatem najciekawszym informacjom o Neutronie.

Jeśli pominąć niektóre rządy, nie ulega żadnej wątpliwości, że przyszłością są rakiety wielokrotnego użytku. I o ile Neutron nie celuje w pełną re-używalność, to cały projekt jest wyraźnie podporządkowany tej idei. Chyba najciekawszym pomysłem jest podejście do owiewki. Zamiast odrzucanej osłony na drugim stopniu rakiety, Neutron przenosi ją na pierwszy stopień i otwiera, zamiast odrzucać. Ponadto będzie czwórdzielna, o ile projekt nie ulegnie zmianie, a po wypuszczeniu ukrytego wewnątrz drugiego stopnia i ładunku będzie ponownie ulegać zamknięciu.

Pomysł kojarzy mi się trochę z tym jak SpaceX postanowił “przenieść” nogi do lądowania z pierwszego stopnia na “stopień zerowy” czyli naziemną infrastrukturę, która ma łapać booster Starshipa. Dzięki tak rozwiązanej owiewce nowa rakieta Rocket Lab ma dysponować “najlżejszym” drugim stopniem. Nie wiem według jakiej miary, szkoda się nad tym rozwodzić, gdy rakieta wciąż jest głównie w głowach inżynierów. Nie zmienia to jednak elegancji pomysłu. Dzięki temu można niemal całkowicie olać aerodynamikę i wytrzymałość drugiego stopnia na atmosferę a przez to uprościć jedyny element, który będzie spisany na straty.

Rocket Lab pozostaje przy kompozytach węglowych. Tu nastąpił showmański fragment prezentacji, gdzie Beck pokazał jak żelazny taran obchodzi się z metrem kwadratowym stali nierdzewnej, aluminium i ich kompozytu węglowego. Chyba nie trzeba się rozwodzić nad tym jak niemiarodajne jest takie porównanie. Nie oznacza to jednak, że pozostawanie przy tym materiale jest złe a droga SpaceX jest lepsza. Szczególnie biorąc pod uwagę, że Rocket Lab chwali się sprawnym procesem produkcji, nakładając całe metry włókien węglowych w ciągu minut.

Rakieta jest baryłkowata co daje jej dobre właściwości aerodynamiczne, kluczowe przy ponownym wchodzeniu w atmosferę. Mniejsza waga kompozytowej rakiety to kolejny atut. Wszystko to ma sprawić, że siedem silników Archimedes może pracować bez skrajnego obciążenia. Archimedes na ten moment też istnieje tylko na papierze, ale ma mieć ciąg miliona Newtonów i być silnikiem z generatorem gazu. Oznacza to, że część paliwa i tlenu będzie trafiać do preburnera, który będzie napędzać turbopompy odpowiadające za wtłaczanie tlenu i paliwa do silnika. To zmiana w stosunku do pierwszej rakiety Rocket Lab. Electron używał elektrycznych pomp. Te jednak źle się skalują wraz z rozmiarem rakiety, więc o ile świetnie pasowały do malutkiego (ot 18 metrów wysokości / 1,2m średnicy) Electrona, to grubasek (40m wysokości / 7m średnicy) potrzebuje bardziej klasycznych rozwiązań.

Paliwem będzie metan, co powinno ułatwić wielokrotnie używanie silników (więcej o zaletach metanu przeczytacie tutaj - Kanapowy inżynier - paliwa rakietowe) ponadto Beck kilkukrotnie podkreślał, że nie będą zamęczać siedmiu Archimedesów niosących rakietę. Podobnie jak w przypadku fragmentu poświęconego materiałom, brzmi to jak przytyk do SpaceX, gdzie Musk stara się wycisnąć absolutne maksimum z Raptora (ostatni rekord ciśnienia w spalania komorze był porównywalny z ciśnieniem na głębokości czterech kilometrów). W tym wypadku silniki mają odwalać dobrą robotę bez ekstremalnych warunków, co zapewni im sprawność przy wielu lotach.

Neutron po uwolnieniu drugiego stopnia ma wracać na do bazy startowej. I tu padły słowa, że nie będzie potrzebny transport “drogimi barkami”, co obecnie robi tylko SpaceX. Nie bez powodu, bo powrót w to samo miejsce wymaga zużycia większej ilości paliwa, ale czas pokaże czy Rocket Lab dobrze sobie to wykalkulował. Zamiast rozkładanych nóg, są lekko wysuwane. Jak zauważył Scott Manley, możliwe, że idące wzdłuż rakiety nogi mogą dublować również jako kanały dla części okablowania i hydrauliki pojazdu. Dwie z nóg stanowią też niewielkie dodatkowe powierzchnie aerodynamiczne, co pewnie będzie wspierać lot powrotny.

Rocket Lab generalnie jak mówi, że coś zrobi to to robi. Czasem nawet jak mówią, że czegoś nie zrobią to i tak próbują to zrobić. Dlatego ja na Neutrona czekam z wielkim zaciekawieniem.


https://www.youtube.com/watch?v=7kwAPr5G6WA - Prezentacja Rocket Lab
https://www.youtube.com/watch?v=GcZ19f-yqfs - Scott Manley i jego komentarz


sobota, 20 listopada 2021

Fundacja - wrażenia z pierwszego sezonu

Mamy za sobą pierwszy sezon Fundacji. Od pierwszych zapowiedzi było jasne, że nie będzie to wierna ekranizacja. Przyjmowałem to jednak za dobrą kartę. Książki Asimova zdecydowanie potrzebowały wiele pracy by mogły nadawać się na interesujący serial. Liczyłem jednak na zachowanie głównej idei, tzn mechanizmu psychohistorii i tego jak Plan Seldona miał ukrócić cierpienia i chaos w galaktyce po nieuchronnym upadku imperium. Niestety tak się nie stało. Główne idee zostały potwornie wykrzywione a serial jako całość nie porywa.

To co najlepsze w serialu nie pochodzi z książek. To co najlepsze w książkach nie trafiło do serialu. Kompletnie pomieszano psychohistorię, która miała parać się przewidywaniem niezliczonych mas ludzkich. Tymczasem serialowy plan Seldona opiera się o niuanse i decyzje pojedynczych osób, jest rozciągniętą na dekady a jeśli powstaną kolejne sezony, na setki lat intrygą. W pierwszej połowie sezonu co rusz ktoś opowiada o wierze w plan, podczas gdy to nie powinno mieć związku z wiarą, tylko być matematyczną nieuchronnością. Fundacja nie miała być zarzewiem rewolucji i upadku Imperium, tylko dzięki przewadze naukowej (oraz skróceniu łańcuchów zależności i ekstremalnej specjalizacji) przyspieszyć powstanie drugiego, lepszego imperium.

Nijakość postaci w drobnym stopniu rekompensuje przepych strony wizualnej. Jest jednak jeden diamencik w tej produkcji w postaci Lee Pace grającego klony Imperatora. Cały ten wątek nie ma bezpośredniego odbicia w książkach. Dostajemy masę ciekawych motywów, tożsamości, stagnacji, intrygę... Ogląda się to dość fascynująco, a Lee Pace w swoich rolach jest absolutnie świetny. Czy warto oglądać ten serial dla niego? Nie przesadzałbym. Szczególnie po dziesiątym odcinku, który wręcz trudno było mi wysiedzieć. Ale jeśli macie głód przyzwoitego (choć miejscami naiwnego i irytującego) science fiction w absolutnie prześlicznej oprawie, to będziecie raczej zadowoleni.


sobota, 13 listopada 2021

Pierwszy kandydat na dziewiątą planetę? Raczej nie.


Niedawno ukazała się publikacja “A search for Planet 9 in the IRAS data” (Poszukiwanie dziewiątej planety w danych z IRAS), które jest prawdopodobnie pierwszym wskazującym kandydata na dziewiątą planetę, której istnienie postulują Mike Brown i Konstantin Batygin. Zanim przejdę do głębszego komentarza, wersja TL;DR: to raczej nie jest nowa planeta, a jeśli jest, to nie ta, której istnienie przewidzieli Batygin/Brown.

Autor, Michael Rowan-Robinson, zrobił rzecz czadową, bo postanowił poszukać dziewiątej planety w starych danych z satelity IRAS, który jako pierwszy wykonał podczerwoną mapę całego nieba jeszcze w 1983 roku. Nie jest to nic nowego, ale wciąż imponuje mi, że do dziś naukowcy wymyślają nowe metody by wyłowić nowe odkrycia ze starych danych. W tym wypadku gość spróbował przewidzieć jak wyglądałaby odległa planeta w naszym układzie słonecznym, a następnie poszukiwał w danych czegoś pasującego do przewidywań. No i miał jedno trafienie.

Bodaj najważniejszą informacją jest to, że inne dane z innych przeglądów nieba nie potwierdziły istnienia tego obiektu. Sam autor publikacji stwierdza, że mało prawdopodobne, że trafił na prawdziwy obiekt. Jeśli by istniał, to znajduje się w odległości 225 AU (jednostek astronomicznych), tymczasem orbita postulowana przez duet Brown/Batygin to około 300AU. Przewidzieli też oni masę od 5 do 8 mas Ziemi, tymczasem tu masa wyniosłaby raczej 3-5 mas Ziemi.

Sam Mike Brown w miły sposób skomentował tekst. Jasno stwierdził, że dane są mało przekonujące, ale publikacja jest fajna. Jasno podkreślił, że nawet jeśli obiekt istnieje to NIE JEST dziewiątą planetą, której istnienie przewiduje jego teoria. Orbita jest całkiem niezgodna z przewidywaniami a ten potencjalny obiekt nie mógłby wyjaśnić obserwowanego układu ciał poza Neptunem. Gdyby Michael Rowan-Robinson rzeczywiście odkrył planetę, wówczas Batygin i Brown wciąż szukaliby swojej planety, tylko byłaby to już dziesiąta planeta.

Może coś tam jest i na pewno nie zaszkodzi sprawdzić, jednak nie róbcie sobie nadmiernych nadziei. W podczerwieni gaz kosmiczny generuje bardzo dużo szumu i fałszywych obrazów. Między innymi dlatego poszukiwanie dziewiątej planety jest tak trudne. Ponadto IRAS był pierwszym satelitą tego typu i te niemal czterdziestoletnie dane nie są najwyższej jakości.


Źródła:
https://arxiv.org/pdf/2111.03831.pdf - publikacja Michaela Rowan-Robinsona
https://twitter.com/plutokiller/status/1458038427090178052 - komentarz Browna
https://www.youtube.com/watch?v=VQqOo2Kfzbs - John Michael Godier
https://www.youtube.com/watch?v=ZSyAO4fGZOE - Anton Petrov


wtorek, 12 października 2021

Hyceańska heca - nowa klasa planet

Uwielbiam pisać o egzoplanetach, ale dziś będę trochę panem marudą, niszczycielem dobrej zabawy. W sierpniu tego roku ukazało się badanie poświęcone tak zwanym “światom hyceańskim”. Poświęcone jest warunkom dla życia i biosygnaturom, które mogą na nich występować.


Dobra może trochę przesadziłem z tym byciem panem marudą, ale z kilku powodów irytuje mnie pewne zamieszanie i rozgłos wokół tematu “nowo odkrytej” klasy planet. W rzeczywistości autorzy publikacji “Habitability and Biosignatures of Hycean Worlds” po prostu wyróżnili określony typ, dużych planet pozasłonecznych, które okrywa atmosfera bogata w wodór pod którym znajdują się rozległe oceany. Nazwa “hycean” to połączenie “hydrogen” i “ocean”.

Gdy zaczęto odkrywać planety pozasłoneczne w dużych ilościach okazało się, że wyraźny podział na małe skalne planety i wielkie gazowe giganty, tak klarowny w Układzie Słonecznym, nie ma odbicia w kosmosie. Okazało się nie tylko, że istnieją planety o pośrednich rozmiarach, ale wręcz, że te super-Ziemie i mini-Neptuny stanowią większość egzoplanet. Choć nawet między tymi dwiema kategoriami nie ma wyraźnej granicy, choć literatura często wspomina o światach oceanicznych czy nawet parowych (steam worlds), postanowili dodać swoją. I zaowocowało to dość szerokim echem w mediach.

Nie jest to jednak całkiem pozbawiony sensu chwyt marketingowy. Istotnie, dzięki ogromnej masie i powłoce wodorowej ta klasa egzoplanet może utrzymywać wodę w stanie ciekłym w znacznie większym zakresie orbit niż mniejsze super-Ziemie czy planety typu ziemskiego, dla których pas odległości od gwiazdy, w którym nie jest ani za zimno, ani za gorąco, jest trochę skromniejszy. Hyceańskich planet jest też niemal na pewno więcej niż “bliźniaczek Ziemi”. Poza tym łatwiej je wykrywać i badać.

Oczywiście jak wynika z tytułu publikacji, autorzy są zainteresowani nie tylko wodą, ale potencjalnym życiem na takich planetach. Temperatura na powierzchni niektórych może sięgać 200 stopni Celsjusza, jednak z powodu ciśnienia, sięgającego nawet tysiąca atmosfer, woda może pozostać w stanie ciekłym. A głębiej pod powierzchnią może być znacznie chłodniejsza. Według autorów niektóre z tych planet dzięki temu mogą oferować dobre warunki dla życia, choć prawdopodobnie może być ono ograniczone do mikroskopijnych form. Jeśli skalne jądro takiej planety oferuje odpowiednie minerały, to istotnie może być dam dość energii i budulca dla życia.

Następnie autorzy również dywagują trochę na temat biosygnatur, które mogą być trochę inne niż takie, których oczekujemy na planetach podobnych do Ziemi, ale wciąż potencjalnie wykrywalne dla teleskopów przyszłości takich jak JWST. Zastanawiam się jednak na ile mogli się tu zagalopować. Patrząc na to jak wielce kontrowersyjne okazało się odkrycie fosfiny na Wenus oraz interpretacja jej obecności, ciężko wyobrazić sobie jednoznaczną detekcję życia na tak egzotycznych planetach odległych o dziesiątki czy setki lat świetlnych. Panują tam warunki tak obce temu co znamy, że ślady podmorskiego życia mogą być całkowicie zacierane i niewidoczne, przez warstwę atmosfery zgniatającej wodę o temperaturze 200°C. Mogą tam zachodzić nieprzewidziane przez nas procesy geologiczne (hydrologiczne?), które zaowocują nieoczekiwanymi biosygnaturami (bo i samo życie może być zdecydowanie odmienne od tego co znamy). Niewykluczone też, że mogą tam istnieć “zwodnicze biosygnatury” abiologicznego pochodzenia.

Podoba mi się pragmatyzm zainteresowania tymi planetami. Są duże, łatwiej je obserwować i analizować niż te te bardziej podobne do Ziemi. Co tu dużo mówić - myślę, że warto badać wszelkie planety, nie będzie to zmarnowany czas. Irytuje mnie jednak, że publikacja ta ewidentnie została podchwycona przez media przez trik z ogłoszeniem “odkrycia” nowej klasy planet. Nawet jeśli istnieje tam życie (co byłoby fantastyczne), może być tak, że całą tamtejszą biosferę można by traktować jako ekstremofile i próżno szukać tam złożonych istot.

Wreszcie mam jeszcze jedną obawę. Otóż wydaje mi się, że tematyka badania jest dość szeroka. Autorzy zaczynają od zasięgu strefy umiarkowanej (ekosfery, strefy zamieszkiwalnej) a kończą na biosygnaturach zupełnie odrębnego drzewa życia. Badania tego typu często stają w ogniu specjalistów w swoich dziedzinach. Nie wiem czy tak będzie w tym wypadku. Ostatecznie jednak, żeby nie być wielkim marudą powiem, że może to i tak dobrze, że trochę cichy ostatnio temat egzoplanet dostał choćby taki zastrzyk.


Źródła:
Habitability and Biosignatures of Hycean Worlds
Światy hiaceańskie: nowa szansa na biosygnatury?
Newfound Class of Planets Is Good News for Search of Life
‘Hycean’ Worlds Are a New Category of Exoplanets That Could Be Hiding Alien Life
https://en.wikipedia.org/wiki/Hycean_planet


niedziela, 3 października 2021

Możliwa planeta okołopotrójna - GW Orionis ABCb


Układ gwiezdny GW Orionis jest interesujący niezależnie od tego, czy kryje się tam planeta, czy nie. Składają się nań trzy gwiazdy otoczone koncentrycznymi pierścieniami protoplanetarnymi. Z reguły znajdują się one w jednej płaszczyźnie, w tym wypadku jednak są one nachylone o 11, 35 i 40 stopni - każdy kolejny bardziej. Ponadto między pierwszym a pozostałymi dwoma pierścieniami jest dość spora przerwa, a wewnętrzny ma eliptyczny kształt, co jest również nietypowe.

Jak można się domyślić z pyłu i gazu znajdującego się w pierścieniach protoplanetarnych powstają planety. Ale nie zawsze - na przykład, gdy w układzie znajduje się więcej niż jedna gwiazda, mogą one zakłócać stabilność pierścieni i formujących się tam obiektów, podobnie jak gwiazdy-towarzyszki krążące wokół układu z pierścieniem . Znaleźliśmy już sporo egzoplanet w układach wielokrotnych, w tym garść okrążających dwie gwiazdy (czyli odpowiedniki gwiezdno wojennej Tatooine). Nazywa się je planetami okołopodwójnymi. Do tej pory jednak nie odkryto egzoplanety, która okrążała by aż trzy gwiazdy.

Astronomowie sądzą, że obecność gazowego giganta w układzie GW Ori, mogłoby wyjaśnić wiele niezwykłych cech tego układu. Byłaby to pierwsza planeta okołopotrójna jaką odkryto. To dobra okazja by wyjaśnić w jaki sposób nadaje się formalne nazwy planetom. Konwencja zakłada, że do nazwy gwiazdy dodajemy małą literkę zaczynając od “b” (uznaje się, że gwiazda to “a”). Kolejne planety otrzymują kolejne litery. Jeśli odkrytych zostanie wiele planet jednocześnie, otrzymują literki od najbliższej gwieździe do najdalszej. Co gdy nie wszystkie zostaną odkryte jednocześnie? Spójrzmy na układ Kepler-20, gdzie odkryto aż sześć planet. Patrząc od najbliższej do najdalszej oznakowano je następująco: b, e, c, f, g, d. Choć istnienie pierwszych pięciu ogłoszono w grudniu 2011, widać, że nie wszystkie odkryto jednocześnie i zanim opublikowano wyniki dotyczące planet b, c, d udało się odkryć jeszcze e i f. W roku 2016, po żmudnej analizie światła gwiazdy, astronomowie doszli do wniosku, że w układzie znajduje się jeszcze jedna planeta, której orbita jest wystarczająco nachylona, że nie przesłania gwiazdy z perspektywy naszych teleskopów (choć znajdująca się dalej planeta d dokonuje tranzytu). Tak do układu dołączyła planeta Kepler-20g.

W układach wielokrotnych, gwiazdom zwyczajowo przypisuje się wielkie litery, kolejno od najjaśniejszej gwiazdy. Wówczas, gdy planeta krąży wokół jednej z nich do nazwy układu dodaje się oznaczenie gwiazdy a dopiero później planety. Dlatego jedna z planet w konstelacji Łabędzia nosi nazwę 16 Cygni Bb. Z nazwy można wywnioskować, że 16 Cygni to układ co najmniej podwójny (zdradzę od razu, że to układ potrójny) i drugą co do jasności gwiazdę okrąża co najmniej jedna planeta. Gdyby wspomniana planeta okrążała dwie gwiazdy jej formalna nazwa brzmiałaby 16 Cygni (AB)b. Zatem jeśli uda się odkryć pierwszą planetę okrążającą trzy gwiazdy jednocześnie, najprawdopodobniej będzie nosić nazwę GW Orionis (ABC)b, choć uproszczonym zapisem będzie GW Ori b. Proste?




Źródła:
Układ potrójny GW Ori i jego dysk okołogwiazdowy
New Observations Show Planet-forming Disc Torn Apart by its Three Central Stars
Exceptionally rare planet with three suns may lurk in Orion's nose
Rarest planet in the universe may be lurking in Orion's nose


niedziela, 19 września 2021

Byłem w błędzie co do elektryków

Jak się Wam podoba taki clickbait? Ponoć nie ma w tym nic złego, jeśli clickbait nie wprowadza w błąd, a ten jest zupełnie szczery, choć będzie wymagał wieeelu doprecyzowań. Wszystko zaczyna się od świetnego (kolejnego) filmu od Engineering Explained. Nosi on tytuł “Is Keeping Your Old Car Better For The Environment?” (“Czy zachowanie starego samochodu jest lepsze dla środowiska?”). Nawiązuje tu do dość powszechnego (a przynajmniej tak mi się zdaje) przekonania, że choć elektryczne samochody są lepsze dla środowiska w trakcie eksploatacji, to biorąc pod uwagę emisje związane z ich produkcją, sumarycznie zamiana samochodu spalinowego na elektryka może być gorsza. Okazuje się, że generalnie nie jest to prawda.

Sam padłem ofiarą tego przekonania i nie wykazałem się sceptyczną postawą, dlatego bardzo doceniam ten film i gorąco go polecam. W ramach pokuty, postanowiłem przyjrzeć się jak oszacowania Jasona Fenske mają się do naszej rzeczywistości i nie tylko. Dodatkowo, przygotowałem tą notkę, żeby skorzystali youtubo-sceptyczni i osoby niekoniecznie władające angielskim. Oczywiście zakładam, że w tej dyskusji skupiamy się tylko i wyłącznie na aspekcie emisji, nie na kwestiach finansowych.

Kluczowe dwa czynniki to emisje roczne związane z eksploatacją samochodu oraz emisje towarzyszące produkcji nowego samochodu. Jeśli samochód już jest w naszym posiadaniu, ten drugi czynnik wynosi zero. Jeśli roczne emisje nowego są niższe to z grubsza rzecz ujmując kwestią czasu jest, po jakim czasie (po ilu latach) bilans będzie korzystny. Nie zmieniałem tu założeń autora kanału Engineering Explained, który podpiera się publikacjami, według których nowy, spalinowy, wydajny samochód to ekwiwalent około dziewięciu ton CO2 w atmosferze na starcie. Jako modelowy elektryk służy Tesla Model 3, której produkcja emituje niemal dziesięć i pół tony CO2.

Odrobinę gimnastyki musiałem wykonać przy rocznych emisjach. Po pierwsze w przeciwieństwie do USA, gdzie wydajność liczy się w milach które można przejechać na galonie paliwa, u nas popularną miarą jest liczba litrów spalonych w trakcie przejechania 100 kilometrów. Z pomocą przyszedł artykuł na autokult.pl, dzięki któremu ostatecznie założyłem, że “stary” spalinowy samochód spala 7,5 litra a potencjalny nowy, ekonomiczny będzie spalać 5,5 litra (naśladowałem metodologię artykułu tj. 50% średniej to spalanie w mieście 25% na autostradzie i 25% na krajówkach). W przypadku Tesli miarą będzie zużycie kWh/100km i wynosi 14.9 kWh.

Ilość kilometrów przejechanych rocznie to jeden z istotnych powodów dla których rzuciłem się na ten tekst, zakładając, że w USA, kraju samochodziarzy, jeździ się znacznie więcej. Oznaczałoby to, że w USA elektryk szybciej uzyska lepszy bilans środowiskowy. Tymczasem na podstawie artykułu PolskaTimes polacy jeżdżą średni 20 tys. km rocznie (71% Polaków 20 tys. km lub mniej), co jest zdumiewająco blisko 12 tys. mil zakładanych przez Jasona (choć sam podkreślił, że to mniej niż średnia w USA).

Zanim będziemy mogli wszystko policzyć pozostaje jeszcze kwestia jakie są emisje związane z przejechaniem jednego kilometra różnymi samochodami (w różnych krajach). Spalenie litra benzyny to emisja 2,35 kg CO2. W związku z tym nasz modelowy “stary” spalinowy wyemituje 176 gramów CO2 na kilometr a jego młodszy, ekonomiczny braciszek 129 gramów CO2 na kilometr. Tesla ładowana we Francji (57.3 gramów ekwiwalentu CO₂ na kWh) wyemituje zaledwie 8,5 grama CO2. Tesla ładowana w Polsce (750 (!) gramów ekwiwalentu CO2 na kWh) wyemituje zaledwie 111 gramów CO2. To największe rozbieżności z filmem od Engineering Explained. W jego przykładzie nowy spalinowy samochód emitował 29% mniej a Tesla blisko 70% mniej. W moich obliczeniach zejście z 7,5 l/100km do 5,5 litra to redukcja emisji o 27%, natomiast Tesla w Polsce wyemituje 36% mniej CO2 a we Francji aż 95% mniej.

Tyle o metodach. Jakie są ostateczne wyniki? Warto. W USA i Francji już po 4 latach bilans środowiskowy samochodu elektrycznego powinien być korzystny. W przypadku Polski trzeba aż dziewięciu lat… A to zakładając (w każdym przypadku), że miks energetyczny nie będzie się zmieniać na bardziej korzystny. Mam nadzieję, że to najbardziej błędne z założeń. Gwarancja na baterie elektryków to typowo osiem lat, więc należy się spodziewać, że spokojnie pociągnąć co najmniej tyle czasu.

Wiem, że wiele z tych założeń, może wywołać sporo emocji, więc jako bonus (znów idąc śladem Jasona przygotowałem arkusz Google, który możecie sobie skopiować i wprowadzić swoje liczby, żeby poeksperymentować.

Arkusz (skopiuj i baw się śmiało)

Na koniec najważniejsza kwestia - lepsze od zamiany prywatnego samochodu spalinowego na elektryka jest zrezygnowanie z tego środka transportu. Szczególnie w dużych miastach powinniśmy korzystać z alternatyw jak choćby transport publiczny.


Źródła:
Is Keeping Your Old Car Better For The Environment?
Kiedy auto jest ekonomiczne? Podajemy realne wyniki zużycia paliwa
Przeciętny polski kierowca - ile wydaje na paliwo? Ile kilometrów rocznie pokonuje?
Fuel consumption and CO2